org.locationtech.jts:jts-core 1.18.0
org.locationtech.jts.geom.util

## Class AffineTransformation

• All Implemented Interfaces:
Cloneable, CoordinateSequenceFilter

```public class AffineTransformation
extends Object
implements Cloneable, CoordinateSequenceFilter```
Represents an affine transformation on the 2D Cartesian plane. It can be used to transform a `Coordinate` or `Geometry`. An affine transformation is a mapping of the 2D plane into itself via a series of transformations of the following basic types:
• reflection (through a line)
• rotation (around the origin)
• scaling (relative to the origin)
• shearing (in both the X and Y directions)
• translation
In general, affine transformations preserve straightness and parallel lines, but do not preserve distance or shape.

An affine transformation can be represented by a 3x3 matrix in the following form:

``` T = | m00 m01 m02 |
| m10 m11 m12 |
|  0   0   1  |
```
A coordinate P = (x, y) can be transformed to a new coordinate P' = (x', y') by representing it as a 3x1 matrix and using matrix multiplication to compute:
``` | x' |  = T x | x |
| y' |        | y |
| 1  |        | 1 |
```

### Transformation Composition

Affine transformations can be composed using the `compose(org.locationtech.jts.geom.util.AffineTransformation)` method. Composition is computed via multiplication of the transformation matrices, and is defined as:
``` A.compose(B) = TB x TA
```
This produces a transformation whose effect is that of A followed by B. The methods `reflect(double, double, double, double)`, `rotate(double)`, `scale(double, double)`, `shear(double, double)`, and `translate(double, double)` have the effect of composing a transformation of that type with the transformation they are invoked on.

The composition of transformations is in general not commutative.

### Transformation Inversion

Affine transformations may be invertible or non-invertible. If a transformation is invertible, then there exists an inverse transformation which when composed produces the identity transformation. The `getInverse()` method computes the inverse of a transformation, if one exists.
Author:
Martin Davis
• ### Constructor Summary

Constructors
Constructor and Description
`AffineTransformation()`
Constructs a new identity transformation
`AffineTransformation(AffineTransformation trans)`
Constructs a transformation which is a copy of the given one.
```AffineTransformation(Coordinate src0, Coordinate src1, Coordinate src2, Coordinate dest0, Coordinate dest1, Coordinate dest2)```
Constructs a transformation which maps the given source points into the given destination points.
`AffineTransformation(double[] matrix)`
Constructs a new transformation whose matrix has the specified values.
```AffineTransformation(double m00, double m01, double m02, double m10, double m11, double m12)```
Constructs a new transformation whose matrix has the specified values.
• ### Method Summary

All Methods
Modifier and Type Method and Description
`Object` `clone()`
Clones this transformation
`AffineTransformation` `compose(AffineTransformation trans)`
Updates this transformation to be the composition of this transformation with the given `AffineTransformation`.
`AffineTransformation` `composeBefore(AffineTransformation trans)`
Updates this transformation to be the composition of a given `AffineTransformation` with this transformation.
`boolean` `equals(Object obj)`
Tests if an object is an AffineTransformation and has the same matrix as this transformation.
`void` ```filter(CoordinateSequence seq, int i)```
Transforms the i'th coordinate in the input sequence
`double` `getDeterminant()`
Computes the determinant of the transformation matrix.
`AffineTransformation` `getInverse()`
Computes the inverse of this transformation, if one exists.
`double[]` `getMatrixEntries()`
Gets an array containing the entries of the transformation matrix.
`boolean` `isDone()`
Reports that this filter should continue to be executed until all coordinates have been transformed.
`boolean` `isGeometryChanged()`
Reports whether the execution of this filter has modified the coordinates of the geometry.
`boolean` `isIdentity()`
Tests if this transformation is the identity transformation.
`AffineTransformation` ```reflect(double x, double y)```
Updates the value of this transformation to that of a reflection transformation composed with the current value.
`AffineTransformation` ```reflect(double x0, double y0, double x1, double y1)```
Updates the value of this transformation to that of a reflection transformation composed with the current value.
`static AffineTransformation` ```reflectionInstance(double x, double y)```
Creates a transformation for a reflection about the line (0,0) - (x,y).
`static AffineTransformation` ```reflectionInstance(double x0, double y0, double x1, double y1)```
Creates a transformation for a reflection about the line (x0,y0) - (x1,y1).
`AffineTransformation` `rotate(double theta)`
Updates the value of this transformation to that of a rotation transformation composed with the current value.
`AffineTransformation` ```rotate(double sinTheta, double cosTheta)```
Updates the value of this transformation to that of a rotation around the origin composed with the current value, with the sin and cos of the rotation angle specified directly.
`AffineTransformation` ```rotate(double theta, double x, double y)```
Updates the value of this transformation to that of a rotation around a given point composed with the current value.
`AffineTransformation` ```rotate(double sinTheta, double cosTheta, double x, double y)```
Updates the value of this transformation to that of a rotation around a given point composed with the current value, with the sin and cos of the rotation angle specified directly.
`static AffineTransformation` `rotationInstance(double theta)`
Creates a transformation for a rotation about the origin by an angle theta.
`static AffineTransformation` ```rotationInstance(double sinTheta, double cosTheta)```
Creates a transformation for a rotation by an angle theta, specified by the sine and cosine of the angle.
`static AffineTransformation` ```rotationInstance(double theta, double x, double y)```
Creates a transformation for a rotation about the point (x,y) by an angle theta.
`static AffineTransformation` ```rotationInstance(double sinTheta, double cosTheta, double x, double y)```
Creates a transformation for a rotation about the point (x,y) by an angle theta, specified by the sine and cosine of the angle.
`AffineTransformation` ```scale(double xScale, double yScale)```
Updates the value of this transformation to that of a scale transformation composed with the current value.
`static AffineTransformation` ```scaleInstance(double xScale, double yScale)```
Creates a transformation for a scaling relative to the origin.
`static AffineTransformation` ```scaleInstance(double xScale, double yScale, double x, double y)```
Creates a transformation for a scaling relative to the point (x,y).
`AffineTransformation` `setToIdentity()`
Sets this transformation to be the identity transformation.
`AffineTransformation` ```setToReflection(double x, double y)```
Sets this transformation to be a reflection about the line defined by vector (x,y).
`AffineTransformation` ```setToReflection(double x0, double y0, double x1, double y1)```
Sets this transformation to be a reflection about the line defined by a line (x0,y0) - (x1,y1).
`AffineTransformation` ```setToReflectionBasic(double x0, double y0, double x1, double y1)```
Explicitly computes the math for a reflection.
`AffineTransformation` `setToRotation(double theta)`
Sets this transformation to be a rotation around the origin.
`AffineTransformation` ```setToRotation(double sinTheta, double cosTheta)```
Sets this transformation to be a rotation around the origin by specifying the sin and cos of the rotation angle directly.
`AffineTransformation` ```setToRotation(double theta, double x, double y)```
Sets this transformation to be a rotation around a given point (x,y).
`AffineTransformation` ```setToRotation(double sinTheta, double cosTheta, double x, double y)```
Sets this transformation to be a rotation around a given point (x,y) by specifying the sin and cos of the rotation angle directly.
`AffineTransformation` ```setToScale(double xScale, double yScale)```
Sets this transformation to be a scaling.
`AffineTransformation` ```setToShear(double xShear, double yShear)```
Sets this transformation to be a shear.
`AffineTransformation` ```setToTranslation(double dx, double dy)```
Sets this transformation to be a translation.
`AffineTransformation` `setTransformation(AffineTransformation trans)`
Sets this transformation to be a copy of the given one
`AffineTransformation` ```setTransformation(double m00, double m01, double m02, double m10, double m11, double m12)```
Sets this transformation's matrix to have the given values.
`AffineTransformation` ```shear(double xShear, double yShear)```
Updates the value of this transformation to that of a shear transformation composed with the current value.
`static AffineTransformation` ```shearInstance(double xShear, double yShear)```
Creates a transformation for a shear.
`String` `toString()`
Gets a text representation of this transformation.
`Coordinate` ```transform(Coordinate src, Coordinate dest)```
Applies this transformation to the src coordinate and places the results in the dest coordinate (which may be the same as the source).
`void` ```transform(CoordinateSequence seq, int i)```
Applies this transformation to the i'th coordinate in the given CoordinateSequence.
`Geometry` `transform(Geometry g)`
Creates a new `Geometry` which is the result of this transformation applied to the input Geometry.
`AffineTransformation` ```translate(double x, double y)```
Updates the value of this transformation to that of a translation transformation composed with the current value.
`static AffineTransformation` ```translationInstance(double x, double y)```
Creates a transformation for a translation.
• ### Methods inherited from class java.lang.Object

`getClass, hashCode, notify, notifyAll, wait, wait, wait`
• ### Constructor Detail

• #### AffineTransformation

`public AffineTransformation()`
Constructs a new identity transformation
• #### AffineTransformation

`public AffineTransformation(double[] matrix)`
Constructs a new transformation whose matrix has the specified values.
Parameters:
`matrix` - an array containing the 6 values { m00, m01, m02, m10, m11, m12 }
Throws:
`NullPointerException` - if matrix is null
`ArrayIndexOutOfBoundsException` - if matrix is too small
• #### AffineTransformation

```public AffineTransformation(double m00,
double m01,
double m02,
double m10,
double m11,
double m12)```
Constructs a new transformation whose matrix has the specified values.
Parameters:
`m00` - the entry for the [0, 0] element in the transformation matrix
`m01` - the entry for the [0, 1] element in the transformation matrix
`m02` - the entry for the [0, 2] element in the transformation matrix
`m10` - the entry for the [1, 0] element in the transformation matrix
`m11` - the entry for the [1, 1] element in the transformation matrix
`m12` - the entry for the [1, 2] element in the transformation matrix
• #### AffineTransformation

`public AffineTransformation(AffineTransformation trans)`
Constructs a transformation which is a copy of the given one.
Parameters:
`trans` - the transformation to copy
• #### AffineTransformation

```public AffineTransformation(Coordinate src0,
Coordinate src1,
Coordinate src2,
Coordinate dest0,
Coordinate dest1,
Coordinate dest2)```
Constructs a transformation which maps the given source points into the given destination points.
Parameters:
`src0` - source point 0
`src1` - source point 1
`src2` - source point 2
`dest0` - the mapped point for source point 0
`dest1` - the mapped point for source point 1
`dest2` - the mapped point for source point 2
• ### Method Detail

• #### reflectionInstance

```public static AffineTransformation reflectionInstance(double x0,
double y0,
double x1,
double y1)```
Creates a transformation for a reflection about the line (x0,y0) - (x1,y1).
Parameters:
`x0` - the x-ordinate of a point on the reflection line
`y0` - the y-ordinate of a point on the reflection line
`x1` - the x-ordinate of a another point on the reflection line
`y1` - the y-ordinate of a another point on the reflection line
Returns:
a transformation for the reflection
• #### reflectionInstance

```public static AffineTransformation reflectionInstance(double x,
double y)```
Creates a transformation for a reflection about the line (0,0) - (x,y).
Parameters:
`x` - the x-ordinate of a point on the reflection line
`y` - the y-ordinate of a point on the reflection line
Returns:
a transformation for the reflection
• #### rotationInstance

`public static AffineTransformation rotationInstance(double theta)`
Creates a transformation for a rotation about the origin by an angle theta. Positive angles correspond to a rotation in the counter-clockwise direction.
Parameters:
`theta` - the rotation angle, in radians
Returns:
a transformation for the rotation
• #### rotationInstance

```public static AffineTransformation rotationInstance(double sinTheta,
double cosTheta)```
Creates a transformation for a rotation by an angle theta, specified by the sine and cosine of the angle. This allows providing exact values for sin(theta) and cos(theta) for the common case of rotations of multiples of quarter-circles.
Parameters:
`sinTheta` - the sine of the rotation angle
`cosTheta` - the cosine of the rotation angle
Returns:
a transformation for the rotation
• #### rotationInstance

```public static AffineTransformation rotationInstance(double theta,
double x,
double y)```
Creates a transformation for a rotation about the point (x,y) by an angle theta. Positive angles correspond to a rotation in the counter-clockwise direction.
Parameters:
`theta` - the rotation angle, in radians
`x` - the x-ordinate of the rotation point
`y` - the y-ordinate of the rotation point
Returns:
a transformation for the rotation
• #### rotationInstance

```public static AffineTransformation rotationInstance(double sinTheta,
double cosTheta,
double x,
double y)```
Creates a transformation for a rotation about the point (x,y) by an angle theta, specified by the sine and cosine of the angle. This allows providing exact values for sin(theta) and cos(theta) for the common case of rotations of multiples of quarter-circles.
Parameters:
`sinTheta` - the sine of the rotation angle
`cosTheta` - the cosine of the rotation angle
`x` - the x-ordinate of the rotation point
`y` - the y-ordinate of the rotation point
Returns:
a transformation for the rotation
• #### scaleInstance

```public static AffineTransformation scaleInstance(double xScale,
double yScale)```
Creates a transformation for a scaling relative to the origin.
Parameters:
`xScale` - the value to scale by in the x direction
`yScale` - the value to scale by in the y direction
Returns:
a transformation for the scaling
• #### scaleInstance

```public static AffineTransformation scaleInstance(double xScale,
double yScale,
double x,
double y)```
Creates a transformation for a scaling relative to the point (x,y).
Parameters:
`xScale` - the value to scale by in the x direction
`yScale` - the value to scale by in the y direction
`x` - the x-ordinate of the point to scale around
`y` - the y-ordinate of the point to scale around
Returns:
a transformation for the scaling
• #### shearInstance

```public static AffineTransformation shearInstance(double xShear,
double yShear)```
Creates a transformation for a shear.
Parameters:
`xShear` - the value to shear by in the x direction
`yShear` - the value to shear by in the y direction
Returns:
a transformation for the shear
• #### translationInstance

```public static AffineTransformation translationInstance(double x,
double y)```
Creates a transformation for a translation.
Parameters:
`x` - the value to translate by in the x direction
`y` - the value to translate by in the y direction
Returns:
a transformation for the translation
• #### setToIdentity

`public AffineTransformation setToIdentity()`
Sets this transformation to be the identity transformation. The identity transformation has the matrix:
``` | 1 0 0 |
| 0 1 0 |
| 0 0 1 |
```
Returns:
this transformation, with an updated matrix
• #### setTransformation

```public AffineTransformation setTransformation(double m00,
double m01,
double m02,
double m10,
double m11,
double m12)```
Sets this transformation's matrix to have the given values.
Parameters:
`m00` - the entry for the [0, 0] element in the transformation matrix
`m01` - the entry for the [0, 1] element in the transformation matrix
`m02` - the entry for the [0, 2] element in the transformation matrix
`m10` - the entry for the [1, 0] element in the transformation matrix
`m11` - the entry for the [1, 1] element in the transformation matrix
`m12` - the entry for the [1, 2] element in the transformation matrix
Returns:
this transformation, with an updated matrix
• #### setTransformation

`public AffineTransformation setTransformation(AffineTransformation trans)`
Sets this transformation to be a copy of the given one
Parameters:
`trans` - a transformation to copy
Returns:
this transformation, with an updated matrix
• #### getMatrixEntries

`public double[] getMatrixEntries()`
Gets an array containing the entries of the transformation matrix. Only the 6 non-trivial entries are returned, in the sequence:
``` m00, m01, m02, m10, m11, m12
```
Returns:
an array of length 6
• #### getDeterminant

`public double getDeterminant()`
Computes the determinant of the transformation matrix. The determinant is computed as:
``` | m00 m01 m02 |
| m10 m11 m12 | = m00 * m11 - m01 * m10
|  0   0   1  |
```
If the determinant is zero, the transform is singular (not invertible), and operations which attempt to compute an inverse will throw a NoninvertibleTransformException.
Returns:
the determinant of the transformation
`getInverse()`
• #### getInverse

```public AffineTransformation getInverse()
throws NoninvertibleTransformationException```
Computes the inverse of this transformation, if one exists. The inverse is the transformation which when composed with this one produces the identity transformation. A transformation has an inverse if and only if it is not singular (i.e. its determinant is non-zero). Geometrically, an transformation is non-invertible if it maps the plane to a line or a point. If no inverse exists this method will throw a NoninvertibleTransformationException.

The matrix of the inverse is equal to the inverse of the matrix for the transformation. It is computed as follows:

```
1
det

=   1       |  m11  -m01   m01*m12-m02*m11  |
---   x  | -m10   m00  -m00*m12+m10*m02  |
det      |  0     0     m00*m11-m10*m01  |

= |  m11/det  -m01/det   m01*m12-m02*m11/det |
| -m10/det   m00/det  -m00*m12+m10*m02/det |
|   0           0          1               |

```
Returns:
a new inverse transformation
Throws:
`NoninvertibleTransformationException`
`getDeterminant()`
• #### setToReflectionBasic

```public AffineTransformation setToReflectionBasic(double x0,
double y0,
double x1,
double y1)```
Explicitly computes the math for a reflection. May not work.
Parameters:
`x0` - the X ordinate of one point on the reflection line
`y0` - the Y ordinate of one point on the reflection line
`x1` - the X ordinate of another point on the reflection line
`y1` - the Y ordinate of another point on the reflection line
Returns:
this transformation, with an updated matrix
• #### setToReflection

```public AffineTransformation setToReflection(double x0,
double y0,
double x1,
double y1)```
Sets this transformation to be a reflection about the line defined by a line (x0,y0) - (x1,y1).
Parameters:
`x0` - the X ordinate of one point on the reflection line
`y0` - the Y ordinate of one point on the reflection line
`x1` - the X ordinate of another point on the reflection line
`y1` - the Y ordinate of another point on the reflection line
Returns:
this transformation, with an updated matrix
• #### setToReflection

```public AffineTransformation setToReflection(double x,
double y)```
Sets this transformation to be a reflection about the line defined by vector (x,y). The transformation for a reflection is computed by:
``` d = sqrt(x2 + y2)
sin = y / d;
cos = x / d;

Tref = Trot(sin, cos) x Tscale(1, -1) x Trot(-sin, cos)
```
Parameters:
`x` - the x-component of the reflection line vector
`y` - the y-component of the reflection line vector
Returns:
this transformation, with an updated matrix
• #### setToRotation

`public AffineTransformation setToRotation(double theta)`
Sets this transformation to be a rotation around the origin. A positive rotation angle corresponds to a counter-clockwise rotation. The transformation matrix for a rotation by an angle theta has the value:
```
|  cos(theta)  -sin(theta)   0 |
|  sin(theta)   cos(theta)   0 |
|           0            0   1 |
```
Parameters:
`theta` - the rotation angle, in radians
Returns:
this transformation, with an updated matrix
• #### setToRotation

```public AffineTransformation setToRotation(double sinTheta,
double cosTheta)```
Sets this transformation to be a rotation around the origin by specifying the sin and cos of the rotation angle directly. The transformation matrix for the rotation has the value:
```
|  cosTheta  -sinTheta   0 |
|  sinTheta   cosTheta   0 |
|         0          0   1 |
```
Parameters:
`sinTheta` - the sine of the rotation angle
`cosTheta` - the cosine of the rotation angle
Returns:
this transformation, with an updated matrix
• #### setToRotation

```public AffineTransformation setToRotation(double theta,
double x,
double y)```
Sets this transformation to be a rotation around a given point (x,y). A positive rotation angle corresponds to a counter-clockwise rotation. The transformation matrix for a rotation by an angle theta has the value:
```
|  cosTheta  -sinTheta   x-x*cos+y*sin |
|  sinTheta   cosTheta   y-x*sin-y*cos |
|           0            0   1 |
```
Parameters:
`theta` - the rotation angle, in radians
`x` - the x-ordinate of the rotation point
`y` - the y-ordinate of the rotation point
Returns:
this transformation, with an updated matrix
• #### setToRotation

```public AffineTransformation setToRotation(double sinTheta,
double cosTheta,
double x,
double y)```
Sets this transformation to be a rotation around a given point (x,y) by specifying the sin and cos of the rotation angle directly. The transformation matrix for the rotation has the value:
```
|  cosTheta  -sinTheta   x-x*cos+y*sin |
|  sinTheta   cosTheta   y-x*sin-y*cos |
|         0          0         1       |
```
Parameters:
`sinTheta` - the sine of the rotation angle
`cosTheta` - the cosine of the rotation angle
`x` - the x-ordinate of the rotation point
`y` - the y-ordinate of the rotation point
Returns:
this transformation, with an updated matrix
• #### setToScale

```public AffineTransformation setToScale(double xScale,
double yScale)```
Sets this transformation to be a scaling. The transformation matrix for a scale has the value:
```
|  xScale      0  dx |
|  1      yScale  dy |
|  0           0   1 |
```
Parameters:
`xScale` - the amount to scale x-ordinates by
`yScale` - the amount to scale y-ordinates by
Returns:
this transformation, with an updated matrix
• #### setToShear

```public AffineTransformation setToShear(double xShear,
double yShear)```
Sets this transformation to be a shear. The transformation matrix for a shear has the value:
```
|  1      xShear  0 |
|  yShear      1  0 |
|  0           0  1 |
```
Note that a shear of (1, 1) is not equal to shear(1, 0) composed with shear(0, 1). Instead, shear(1, 1) corresponds to a mapping onto the line x = y.
Parameters:
`xShear` - the x component to shear by
`yShear` - the y component to shear by
Returns:
this transformation, with an updated matrix
• #### setToTranslation

```public AffineTransformation setToTranslation(double dx,
double dy)```
Sets this transformation to be a translation. For a translation by the vector (x, y) the transformation matrix has the value:
```
|  1  0  dx |
|  1  0  dy |
|  0  0   1 |
```
Parameters:
`dx` - the x component to translate by
`dy` - the y component to translate by
Returns:
this transformation, with an updated matrix
• #### reflect

```public AffineTransformation reflect(double x0,
double y0,
double x1,
double y1)```
Updates the value of this transformation to that of a reflection transformation composed with the current value.
Parameters:
`x0` - the x-ordinate of a point on the line to reflect around
`y0` - the y-ordinate of a point on the line to reflect around
`x1` - the x-ordinate of a point on the line to reflect around
`y1` - the y-ordinate of a point on the line to reflect around
Returns:
this transformation, with an updated matrix
• #### reflect

```public AffineTransformation reflect(double x,
double y)```
Updates the value of this transformation to that of a reflection transformation composed with the current value.
Parameters:
`x` - the x-ordinate of the line to reflect around
`y` - the y-ordinate of the line to reflect around
Returns:
this transformation, with an updated matrix
• #### rotate

`public AffineTransformation rotate(double theta)`
Updates the value of this transformation to that of a rotation transformation composed with the current value. Positive angles correspond to a rotation in the counter-clockwise direction.
Parameters:
`theta` - the angle to rotate by, in radians
Returns:
this transformation, with an updated matrix
• #### rotate

```public AffineTransformation rotate(double sinTheta,
double cosTheta)```
Updates the value of this transformation to that of a rotation around the origin composed with the current value, with the sin and cos of the rotation angle specified directly.
Parameters:
`sinTheta` - the sine of the angle to rotate by
`cosTheta` - the cosine of the angle to rotate by
Returns:
this transformation, with an updated matrix
• #### rotate

```public AffineTransformation rotate(double theta,
double x,
double y)```
Updates the value of this transformation to that of a rotation around a given point composed with the current value. Positive angles correspond to a rotation in the counter-clockwise direction.
Parameters:
`theta` - the angle to rotate by, in radians
`x` - the x-ordinate of the rotation point
`y` - the y-ordinate of the rotation point
Returns:
this transformation, with an updated matrix
• #### rotate

```public AffineTransformation rotate(double sinTheta,
double cosTheta,
double x,
double y)```
Updates the value of this transformation to that of a rotation around a given point composed with the current value, with the sin and cos of the rotation angle specified directly.
Parameters:
`sinTheta` - the sine of the angle to rotate by
`cosTheta` - the cosine of the angle to rotate by
`x` - the x-ordinate of the rotation point
`y` - the y-ordinate of the rotation point
Returns:
this transformation, with an updated matrix
• #### scale

```public AffineTransformation scale(double xScale,
double yScale)```
Updates the value of this transformation to that of a scale transformation composed with the current value.
Parameters:
`xScale` - the value to scale by in the x direction
`yScale` - the value to scale by in the y direction
Returns:
this transformation, with an updated matrix
• #### shear

```public AffineTransformation shear(double xShear,
double yShear)```
Updates the value of this transformation to that of a shear transformation composed with the current value.
Parameters:
`xShear` - the value to shear by in the x direction
`yShear` - the value to shear by in the y direction
Returns:
this transformation, with an updated matrix
• #### translate

```public AffineTransformation translate(double x,
double y)```
Updates the value of this transformation to that of a translation transformation composed with the current value.
Parameters:
`x` - the value to translate by in the x direction
`y` - the value to translate by in the y direction
Returns:
this transformation, with an updated matrix
• #### compose

`public AffineTransformation compose(AffineTransformation trans)`
Updates this transformation to be the composition of this transformation with the given `AffineTransformation`. This produces a transformation whose effect is equal to applying this transformation followed by the argument transformation. Mathematically,
``` A.compose(B) = TB x TA
```
Parameters:
`trans` - an affine transformation
Returns:
this transformation, with an updated matrix
• #### composeBefore

`public AffineTransformation composeBefore(AffineTransformation trans)`
Updates this transformation to be the composition of a given `AffineTransformation` with this transformation. This produces a transformation whose effect is equal to applying the argument transformation followed by this transformation. Mathematically,
``` A.composeBefore(B) = TA x TB
```
Parameters:
`trans` - an affine transformation
Returns:
this transformation, with an updated matrix
• #### transform

```public Coordinate transform(Coordinate src,
Coordinate dest)```
Applies this transformation to the src coordinate and places the results in the dest coordinate (which may be the same as the source).
Parameters:
`src` - the coordinate to transform
`dest` - the coordinate to accept the results
Returns:
the dest coordinate
• #### transform

`public Geometry transform(Geometry g)`
Creates a new `Geometry` which is the result of this transformation applied to the input Geometry.
Parameters:
`g` - a `Geometry`
Returns:
a transformed Geometry
• #### transform

```public void transform(CoordinateSequence seq,
int i)```
Applies this transformation to the i'th coordinate in the given CoordinateSequence.
Parameters:
`seq` - a `CoordinateSequence`
`i` - the index of the coordinate to transform
• #### filter

```public void filter(CoordinateSequence seq,
int i)```
Transforms the i'th coordinate in the input sequence
Specified by:
`filter` in interface `CoordinateSequenceFilter`
Parameters:
`seq` - a `CoordinateSequence`
`i` - the index of the coordinate to transform
• #### isGeometryChanged

`public boolean isGeometryChanged()`
Description copied from interface: `CoordinateSequenceFilter`
Reports whether the execution of this filter has modified the coordinates of the geometry. If so, `Geometry.geometryChanged()` will be executed after this filter has finished being executed.

Most filters can simply return a constant value reflecting whether they are able to change the coordinates.

Specified by:
`isGeometryChanged` in interface `CoordinateSequenceFilter`
Returns:
true if this filter has changed the coordinates of the geometry
• #### isDone

`public boolean isDone()`
Reports that this filter should continue to be executed until all coordinates have been transformed.
Specified by:
`isDone` in interface `CoordinateSequenceFilter`
Returns:
false
• #### isIdentity

`public boolean isIdentity()`
Tests if this transformation is the identity transformation.
Returns:
true if this is the identity transformation
• #### equals

`public boolean equals(Object obj)`
Tests if an object is an AffineTransformation and has the same matrix as this transformation.
Overrides:
`equals` in class `Object`
Parameters:
`obj` - an object to test
Returns:
true if the given object is equal to this object
• #### toString

`public String toString()`
Gets a text representation of this transformation. The string is of the form:
``` AffineTransformation[[m00, m01, m02], [m10, m11, m12]]
```
Overrides:
`toString` in class `Object`
Returns:
a string representing this transformation
• #### clone

`public Object clone()`
Clones this transformation
Overrides:
`clone` in class `Object`
Returns:
a copy of this transformation