public class TrianglePredicate extends Object
Constructor and Description |
---|
TrianglePredicate() |
Modifier and Type | Method and Description |
---|---|
static boolean |
isInCircleCC(Coordinate a,
Coordinate b,
Coordinate c,
Coordinate p)
Computes the inCircle test using distance from the circumcentre.
|
static boolean |
isInCircleDDFast(Coordinate a,
Coordinate b,
Coordinate c,
Coordinate p) |
static boolean |
isInCircleDDNormalized(Coordinate a,
Coordinate b,
Coordinate c,
Coordinate p) |
static boolean |
isInCircleDDSlow(Coordinate a,
Coordinate b,
Coordinate c,
Coordinate p)
Tests if a point is inside the circle defined by
the triangle with vertices a, b, c (oriented counter-clockwise).
|
static boolean |
isInCircleNonRobust(Coordinate a,
Coordinate b,
Coordinate c,
Coordinate p)
Tests if a point is inside the circle defined by
the triangle with vertices a, b, c (oriented counter-clockwise).
|
static boolean |
isInCircleNormalized(Coordinate a,
Coordinate b,
Coordinate c,
Coordinate p)
Tests if a point is inside the circle defined by
the triangle with vertices a, b, c (oriented counter-clockwise).
|
static boolean |
isInCircleRobust(Coordinate a,
Coordinate b,
Coordinate c,
Coordinate p)
Tests if a point is inside the circle defined by
the triangle with vertices a, b, c (oriented counter-clockwise).
|
static DD |
triAreaDDFast(Coordinate a,
Coordinate b,
Coordinate c) |
static DD |
triAreaDDSlow(DD ax,
DD ay,
DD bx,
DD by,
DD cx,
DD cy)
Computes twice the area of the oriented triangle (a, b, c), i.e., the area
is positive if the triangle is oriented counterclockwise.
|
public static boolean isInCircleNonRobust(Coordinate a, Coordinate b, Coordinate c, Coordinate p)
a
- a vertex of the triangleb
- a vertex of the trianglec
- a vertex of the trianglep
- the point to testpublic static boolean isInCircleNormalized(Coordinate a, Coordinate b, Coordinate c, Coordinate p)
Based on code by J.R.Shewchuk.
a
- a vertex of the triangleb
- a vertex of the trianglec
- a vertex of the trianglep
- the point to testpublic static boolean isInCircleRobust(Coordinate a, Coordinate b, Coordinate c, Coordinate p)
a
- a vertex of the triangleb
- a vertex of the trianglec
- a vertex of the trianglep
- the point to testpublic static boolean isInCircleDDSlow(Coordinate a, Coordinate b, Coordinate c, Coordinate p)
DD
arithmetic for robustness.a
- a vertex of the triangleb
- a vertex of the trianglec
- a vertex of the trianglep
- the point to testpublic static DD triAreaDDSlow(DD ax, DD ay, DD bx, DD by, DD cx, DD cy)
DD
arithmetic for robustness.ax
- the x ordinate of a vertex of the triangleay
- the y ordinate of a vertex of the trianglebx
- the x ordinate of a vertex of the triangleby
- the y ordinate of a vertex of the trianglecx
- the x ordinate of a vertex of the trianglecy
- the y ordinate of a vertex of the trianglepublic static boolean isInCircleDDFast(Coordinate a, Coordinate b, Coordinate c, Coordinate p)
public static DD triAreaDDFast(Coordinate a, Coordinate b, Coordinate c)
public static boolean isInCircleDDNormalized(Coordinate a, Coordinate b, Coordinate c, Coordinate p)
public static boolean isInCircleCC(Coordinate a, Coordinate b, Coordinate c, Coordinate p)
In general this doesn't appear to be any more robust than the standard calculation. However, there is at least one case where the test point is far enough from the circumcircle that this test gives the correct answer.
LINESTRING (1507029.9878 518325.7547, 1507022.1120341457 518332.8225183258, 1507029.9833 518325.7458, 1507029.9896965567 518325.744909031)
a
- a vertex of the triangleb
- a vertex of the trianglec
- a vertex of the trianglep
- the point to testCopyright © 2020. All rights reserved.